Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available October 4, 2026
-
Free, publicly-accessible full text available December 4, 2025
-
Free, publicly-accessible full text available December 1, 2025
-
We study the problem of capacity modification in the many-to-one stable matching of workers and firms. Our goal is to systematically study how the set of stable matchings changes when some seats are added to or removed from the firms. We make three main contributions: First, we examine whether firms and workers can improve or worsen upon changing the capacities under worker-proposing and firm-proposing deferred acceptance algorithms. Second, we study the computational problem of adding or removing seats to either match a fixed worker-firm pair in some stable matching or make a fixed matching stable with respect to the modified problem. We develop polynomial-time algorithms for these problems when only the overall change in the firms’ capacities is restricted, and show NP-hardness when there are additional constraints for individual firms. Lastly, we compare capacity modification with the classical model of preference manipulation by firms and identify scenarios under which one mode of manipulation outperforms the other. We find that a threshold on a given firm’s capacity, which we call its peak, crucially determines the effectiveness of different manipulation actions.more » « less
-
We study fair allocation of indivisible goods and chores among agents with lexicographic preferences---a subclass of additive valuations. In sharp contrast to the goods-only setting, we show that an allocation satisfying envy-freeness up to any item (EFX) could fail to exist for a mixture of objective goods and chores. To our knowledge, this negative result provides the first counterexample for EFX over (any subdomain of) additive valuations. To complement this non-existence result, we identify a class of instances with (possibly subjective) mixed items where an EFX and Pareto optimal allocation always exists and can be efficiently computed. When the fairness requirement is relaxed to maximin share (MMS), we show positive existence and computation for any mixed instance. More broadly, our work examines the existence and computation of fair and efficient allocations both for mixed items as well as chores-only instances, and highlights the additional difficulty of these problems vis-à-vis their goods-only counterparts.more » « less
An official website of the United States government

Full Text Available